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Large-q asymptotics of the random-bond Potts model
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We numerically examine the large-q asymptotics of theq-state random bond Potts model. Special attention
is paid to the parametrization of the critical line, which is determined by combining the loop representation of
the transfer matrix with Zamolodchikov’sc-theorem. Asymptotically the central charge seems to behave like
c(q)5

1
2 log2(q)1O(1). Very accurate values of the bulk magnetic exponentx1 are then extracted by perform-

ing Monte Carlo simulations directly at the critical point. Asq→`, these seem to tend to a nontrivial limit,
x1→0.19260.002.

PACS number~s!: 05.70.Jk, 64.60.Ak, 64.60.Fr
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I. INTRODUCTION

Recently the two-dimensionalq-state random bond Pott
model withq.4 has attracted considerable interest, beca
it serves as a paradigm for examining the effect of quenc
randomness@1# on a first-order phase transition@2#. Since in
this case the randomness couples to the local energy den
a theorem by Aizenman and Wehr@3#, along with related
analytical work@4,5#, suggests that the transition should b
come continuous, as has indeed been verified by subseq
numerical studies@6–13#. Unfortunately, analytical result
have been scarce, except in the limitq→` where properties
of a particular tricritical point were related to those of t
zero-temperature fixed point of the randomfield Ising model
in d521« dimensions@8#. From the conjectured phase di
gram@8# it is, however, known that this fixed point is not th
analytical continuation of the line of random fixed poin
found for finiteq.2 @14,15#. Namely, the latter~henceforth
referred to as theq→` limit of the model! is rather believed
to be associated with a subtle percolationlike limit@8#, the
exact properties of which have not yet been fully elucidat

In the present Rapid Communication we seek to gain
ther knowledge of thisq→` limit by producing numerical
results along the aforementioned line of critical fixed poi
for very large values ofq. Since cross-over effects to th
pure and percolative limits of the model have been show
be important@9,10#, special attention must be paid to th
parametrization of the critical line. Generalizing a recen
developed transfer matrix technique@16#, in which the Potts
model is treated through its loop representation@17#, we
were able to explicitly trace out this line, and as a by-prod
obtain very precise values of the central charge. Based
our numerical results for theq58k state model withk
51,2, . . . ,6 we findcompelling evidence that

c~q!5 1
2 log2~q!1O~1!. ~1.1!
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Although this behavior of the central charge is reminiscen
the Ising-like features of the tricritical fixed point discuss
above, we shall soon see that from the point of view of
magnetic exponent theq→` limit is most definitely not in
the Ising universality class. Note also that our precision
lows us to convincingly distinguish the numerically com
puted central charge from its analytically known value in t
percolation limit@9#.

With the numerically obtained parametrization of th
critical disorder strength at hand we then proceed to mea
the corresponding magnetic bulk scaling dimensionx1 as a
function of q. The most suitable technique here is that
conventional Monte Carlo simulations. Our results lend cr
ibility to the belief @12# thatx1(q) saturates asq→`. Based
on results for theq58k state model withk51,2,3 we pro-
pose the limiting value

x1~q!→0.19260.002 for q→`, ~1.2!

in agreement with the one reported in Ref.@12#. The fact that
Eq. ~1.2! does not coincide with any known scaling dime
sion of standard percolation is remarkable, and calls for f
ther analytical investigations of theq→` limit.

After explaining the loop model transfer matrices in Se
II, we state our results for the critical line and the cent
charge in Sec. III. The Monte Carlo method and the result
values of the magnetic scaling dimension are presente
Sec. IV, and we conclude with a discussion.

II. LOOP MODEL TRANSFER MATRICES

The partition function of the random bond Potts mod
can be written as

Z5(
$s%

)̂
i j &

eKi j ds i ,s j, ~2.1!

where the summation is over theq discrete values of each
spin and the product runs over all nearest-neighbor bond
the square lattice. TheKi j are the reduced coupling con
stants, which for the moment may be drawn from an ar
R13 ©2000 The American Physical Society
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trary distribution. By the standard Kasteleyn-Fortuin tran
formation @18#, Eq. ~2.1! can be recast as a random clus
model

Z5(
$G%

qC~G! )
^ i j &PG

~eKi j 21!, ~2.2!

whereG is a bond percolation graph withC(G) independent
clusters. Note thatq now enters only as a~continuous! pa-
rameter, and since the nonlocality of the clusters does
obstruct the construction of a transfer matrix@19# the inter-
esting regime ofq@4 becomes readily accessible, provid
that one can take into account the randomness in the
plings @9#.

In an analogous fashion we can adapt the even more
ficient loop model representation@16# to the random case
Indeed, trading the clusters for their surrounding loops on
medial lattice@17#, Eq. ~2.2! is turned into

Z5qN/2(
$G%

qL~G!/2 )
^ i j &PG

S eKi j 21

Aq
D , ~2.3!

where N is the total number of spins, and configurationG
encompassesL(G) loops. The strip widthL is measured in
terms of the number of ‘‘dangling’’ loop segments, and mu
be even by definition of the medial lattice@16#.

A pleasant feature of the random bond Potts model is
the critical temperature is known exactly by self-duality@20#.
Employing for simplicity the bimodal distribution

P~Ki j !5 1
2 @d~Ki j 2K1!1d~Ki j 2K2!#, ~2.4!

and choosing the parametrizationsi j [(eKi j 21)/Aq, the
self-duality criterion takes the simple form

s1s251. ~2.5!

To fully identify the critical point the only free parameter
then the strength of the disorder, which can be measure
terms ofR[K1 /K2.1 or s[s1.1.

III. CENTRAL CHARGE

In Ref. @16# we showed that Zamolodchikov’sc-theorem
@21# is a powerful tool for numerically identifying the fixe
points of apuresystem. The idea is simple: From the lea
ing eigenvalue of the transfer matrix, specific free energ
f 0(L) can be computed as a function of the strip widthL.
Effective central chargesc(L) are then obtained by fitting
data for two consecutive strip widths according to@22#

f 0~L !5 f 0~`!2
pc

6L2 1¯ . ~3.1!

By tuning the free parameters of the system, local extrem
c„L,s* (L)… are sought for, and finally the fixed point is ide
tified by extrapolation:s* 5s* (L→`).

In principle this strategy can also be employed for adis-
orderedsystem, provided that error bars are carefully ke
under control. Nowf 0(L) is related to the largest Lyapuno
exponent of a product ofM→` random transfer matrice
@23,8#, and its statistical error vanishes asM 21/2 by the cen-
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tral limit theorem. Thus, for large enoughM any desired
precision onf 0(L) can be achieved.

An important observation is that for larger and largerL,
thec(L) found from Eq.~3.1! become increasingly sensitiv
to errors in f 0(L). Therefore,M must be chosen in accor
dance with the largest strip widthLmax used in the simula-
tions. For the system at hand we found that four signific
digits in c(L) were needed for a reasonable precise iden
cation ofs* (L), and withLmax512 this in turn implies that
the f 0(L) must be determined with six significant digits. W
were thus led to chooseM5108 for q58, andM5109 for
larger values ofq. @Incidentally, improving our results to
Lmax514 would require augmentingM by at least a factor of
100 ~apart from the increased size of the transfer matrice!,
and since several months of computations were spent on
present project this hardly seems possible in a foresee
future.#

Data collection was done by dividing the strip intoM / l
patches of lengthl 5105 lattice spacings, and for each patc
the couplings were randomly generated from acanonical
ensemble, i.e., the distribution~2.4! was restricted to produce
an equal number of strong and weak bonds.

In the right part of Table I we show the resulting two
point fits ~3.1! in the q58 state model, as a function ofs.
The left part of the table provides analogous three-point fi
obtained by including a nonuniversal 1/L4 correction in Eq.
~3.1!. In all cases the error bars are believed to affect only
last digit reported. The two-point fits give clear evidence o
maximum in the central charge, and we estimate its loca
as s* 56.562.0. The corresponding central charge is es
mated from the three-point fits, as these are known to c
verge faster in theL→` limit @9#, and we arrive atc
51.53060.001. To appreciate the precision of this result,
mention that the numerical values ofc(q58) first reported
were 1.5060.05 @7# and 1.51760.025@8#.

Table II summarizes our results for other values ofq. Two
remarkable features are apparent. First,s* }qw is well fitted
by a power law withw50.3160.02. This gives valuable
information on how theq→` limit of the model is ap-
proached, and implies that the ratio of the coupling consta
R[K1 /K25 log(11sAq)/ log(11Aq/s) is a nonmonotonic
function of q that tends to thefinite limiting value (1
12w)/(122w)54.360.6 asq→`. We shall discuss this

TABLE I. Effective central charge of theq58 state model, as a
function of disorder strengths. Two- and three-point fits to Eq.~3.1!
are labeled asC(L,L12) andC(L,L14), respectively.

s c(4,8) c(6,10) c(8,12) c(4,6) c(6,8) c(8,10) c(10,12)

3 1.495 1.500 1.500 1.4101 1.4544 1.4731 1.482
4 1.512 1.517 1.516 1.4157 1.4657 1.4868 1.496
5 1.519 1.525 1.523 1.4152 1.4690 1.4918 1.502
6 1.521 1.528 1.527 1.4116 1.4683 1.4927 1.504
7 1.520 1.529 1.529 1.4067 1.4656 1.4915 1.504
8 1.518 1.528 1.529 1.4013 1.4619 1.4890 1.502
9 1.509 1.530 1.528 1.3972 1.4552 1.4860 1.500

10 1.511 1.525 1.527 1.3908 1.4534 1.4826 1.497
11 1.501 1.526 1.526 1.3873 1.4465 1.4791 1.494
12 1.504 1.519 1.524 1.3816 1.4451 1.4756 1.491



s

e
u

tio
ze
er

di

-

le
d
ar

o

te as

lve
d

in
ed

tu-

a
e

ing
r-

II,

ror,
d

ge,

-

RAPID COMMUNICATIONS

PRE 61 R15LARGE-q ASYMPTOTICS OF THE RANDOM-BOND . . .
finding further in Sec. V. Second, the central charge seem
fulfill the relation ~1.1! as stated in the Introduction.

IV. MAGNETIC SCALING DIMENSION

In this section we explain the Monte Carlo method us
for obtaining values of the magnetic scaling exponent. Sim
lations were performed on square lattices of sizeL3L with
periodic boundary conditions, withL ranging from 4 to
Lmax5128 for q58, 64 andLmax564 for q5512.

We employed the Wolff cluster algorithm@24#. The first
part of the simulations was to determine the autocorrela
times t, which were found to increase with the lattice si
and also withq. For the largest simulated lattices, we det
minedt as follows: 8864 cluster updates forq58 andL
5128, 30006215 for q564 and L5128, and 31 000
63000 forq5512 andL564. This rapid increase oft with
q explains why we simulate only up toL564 for the largest
q.

Next, we measure the magnetization, defined for each
order samplex by

mx5
q^r&21

q21
, ~4.1!

wherer5max(N1,N2, . . . ,Nq)/L2 andNs is the number of
Potts spins taking the values. Here^ . . . & denotes the ther
mal average. Then the magnetizationm(L) is obtained by
averaging over 105 disorder configurations forq58, and 104

configurations forq564 and 512. For each disorder samp
100t updates were dedicated to the thermalization, an
further 100t to the magnetization measurement. Error b
were computed from the disorder fluctuations~it can easily
be checked@10# that the contribution fromthermal fluctua-
tions is negligible!, and the strength of the disorder was ch
sen as indicated in Table II.

From a fit to m(L).L2x1, we obtain for the magnetic
scaling dimension

TABLE II. Critical disorder strengths and central chargec, as
functions ofq.

q s* c c/ log2(q)

8 6.5 ~20! 1.530 ~1! 0.5100 ~3!

64 15.5 ~20! 3.050 ~3! 0.5083 ~5!

512 32 ~2! 4.545 ~10! 0.5050 ~11!

4096 65 ~8! 6.038 ~24! 0.5032 ~20!

32768 135~20! 7.54 ~3! 0.5027 ~20!

262144 250~50! 9.04 ~3! 0.502 ~2!
to

d
-

n

-

s-

,
a
s

-

x15H 0.1535~10! for q58
0.172~2! for q564
0.180~3! for q5512 .

~4.2!

We see that the magnetic exponent seems to satura
we increaseq. In view of the result~1.1! for the central
charge we expect the asymptotic behavior should invo
log(q) rather thanq itself, and indeed the data are well fitte
by

x1~q!5a1b/ log~q!, ~4.3!

with a50.192(2) andb520.080(4). Thus, based on the
form ~4.3! we are led to propose the limiting value~1.2! of
x1 given in the Introduction.

V. DISCUSSION

It is useful to juxtapose our findings on the large-q behav-
ior of the critical line with the phase diagram proposed
Ref. @8#. In that work the disorder strength was parametriz
throughs5qw with w.0, and the limitw→` was identified
with classical percolation on top of the strong bonds. Ac
ally it is easily seen from Eq.~2.2! that directly atq5` this
percolation scenario holds true wheneverw. 1

2 , and assum-
ing that the line of critical fixed points is described by
monotonic functionw* (q) it can thus be confined to th
region w< 1

2 . With this slight reinterpretation, Ref.@8# ar-
gues that atq5` the critical point is located in the limitw
→ 1

2 . Indeed, since forq5` any initial w! 1
2 will be driven

to larger values due to mapping to the random field Is
model, this is nothing but the usual assumption of ‘‘no inte
vening fixed points.’’

However, this seems at odds with the results of Table
where we found that forq@4 the critical line, when mea-
sured in terms ofw, saturates atw50.3160.02. Unless our
numerical method is flawed by some gross systematic er
it is thusa priori difficult to see how this can be reconcile
with the above result ofw* (q5`)5 1

2 . A possible explana-
tion is that the limitsq→` and w→ 1

2 are highly noncom-
muting. This is witnessed by the jump in the central char
which in the percolation limit~w5` andq,`! reads@8#

cperc5
5)

4p
ln~q!.0.477 69 log2~q!, ~5.1!

to be contrasted with our numerical result~1.1!.
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@22# H. W. Blöte, J. L. Cardy, and M. P. Nightingale, Phys. Re

Lett. 56, 742 ~1986!; I. Affleck, ibid. 56, 746 ~1986!.
@23# H. Furstenberg, Trans. Am. Math. Soc.68, 377 ~1963!.
@24# U. Wolff, Phys. Rev. Lett.60, 1461~1988!.


